Practical entry into the HIJKLM ring segment of ciguatoxin CTX3C

Tohru Oishi,† Hisatoshi Uehara, Yoko Nagumo, Mitsuru Shoji, Jean-Yves Le Brazidec, Masashi Kosaka and Masahiro Hirama*

Department of Chemistry, Graduate School of Science, Tohoku University, and CREST, Japan Science and Technology Corporation (JST), Sendai 980-8578, Japan. E-mail: hirama@ykbsc.chem.tohoku.ac.jp

Received (in Cambridge, UK) 27th November 2000, Accepted 18th January 2001 First published as an Advance Article on the web 8th February 2001

The HIJKLM ring segment (27) of the right half portion of ciguatoxin CTX3C (1) has been synthesized using a ringclosing reaction mediated by a low-valent titanium reagent.

During the course of our synthetic studies directed toward ciguatoxins,1,2 we have recently reported the convergent synthesis of the ABCDE3 and IJKLM4 ring fragment of **1**, based

upon an alkylation-ring closing metathesis (RCM) strategy5,6 and a Tebbe reagent (**3**)7 mediated ester olefination-ring closing metathesis sequence,⁸ respectively. Occasionally, however, the key transformation of **2** into **4** in the latter sequence turned out to be non-reproducible. The yield of **4** fluctuated between trace amount to 63% and concomitant formation of an inseparable mixture of enol ethers, **5**, **6**, and **7** tended to occur (Scheme 1). Unfortunately, irrespective of extensive investigation, secure conditions to yield **4** uniformly could not be found. At low conversions **5** sometimes predominated, while **6** and then **7** gradually increased as the reaction time was extended. Since the intermediacy of the diene **5** in the formation of **4** was conceivable,8 mixtures which contained **5** as the major product were treated with **3** or the Schrock catalyst, $2.6-(P_{1}P_{2})_{2}C_{6}H_{3}$. $N=Mo[OC(CF₃)₂Me]₂=CHCMe₂Ph.^{9–11} However, in remark$ able contrast to literature precedent, **4** was not produced in appreciable amounts; instead **6** and **7** increased.8 Steric hindrance around the diene system of **5** is likely to account for this unexpected failure of converting **5** into **4**. Mechanistically, there should exist an alternative pathway ($2 \rightleftharpoons 8 \rightleftharpoons 9 \rightleftharpoons 10 \rightleftharpoons$ **4**) to provide **4**, in which the ester carbonyl group reacts with an

† Present address: Department of Chemistry, Graduate School of Science, Osaka University, Osaka 560-0043, Japan.

internal carbenoid species such as **9** (Scheme 2). Thus, we reasoned that exclusive formation of **9** would improve the yield of **4** and that **9** could be prepared from the phenylthioacetal **11** using the low-valent titanium complex $Cp_2Ti[P(OEt)_3]_2$ recently developed by Takeda.12

The dithioacetal **11** was synthesized as shown in Scheme 3. Although we had synthesized the I-ring moiety of **1** based on a ring-expansion strategy,13 we developed an alternative route applicable to large-scale synthesis. Aldol reaction of glycolate **12**14 with acrolein gave diene **13** as an epimeric mixture of alcohols (47%), which was separated from other diastereomers by flash column chromatography (40% combined yield). RCM reaction of 13 using Grubbs catalyst, $(PCy_3)_2Cl_2Ru=CHPh,$ ¹⁵ proceeded smoothly to give the eight-membered cyclic ether **14** (60%). Reduction of the ester **14** followed by selective protection of the resulting primary alcohol as TBDPS ether, and Swern oxidation of the secondary alcohol gave the enone **15** (3 steps, 68%). Stereoselective introduction of the secondary methyl group was successfully achieved by conjugate addition with Me₂Cu(CN)Li₂ to afford **16** in 74% yield. Removal of the TBDPS group of **16** using TBAF in the presence of AcOH, and reduction of the resulting hydroxy ketone with NaBH(OAc)₃ gave the diol **17** as a single isomer (92%).16 Bis-benzylation, acetal hydrolysis followed by a two step cyanation sequence yielded the nitrile **18** (46% overall yield). Protection, DIBAL-H reduction and thioacetalization gave the dithioacetal **19** (3 steps, 73%), which was condensed with the carboxylic acid **20**4 to afford **11** (58%). Ring-closing reaction of **11** was then examined. A THF solution of **11** was added to excess Takeda reagent $(Cp_2Ti[P(OEt)_3]_2)^{12}$ at rt and then refluxed under an argon atmosphere for 1 h. Using this protocol, the cyclic enol ether was formed reproducibly in 52–67% yield even on a one or two gram scale, while reduction and elimination products of the phenylthio group, **21** and **22**, respectively, were only produced in minor amount, *ca.* 10% combined yield.

min, separation, 47%; ii, $(PCy_3)_2Cl_2Ru=CHPh$ (10 mol%), CH_2Cl_2 (0.01 M), reflux, 24 h, 60%; iii, LAlH, THF, 0 °C to rt, 5 h, 98%; iv, TBDPSCl, Et₃N, DMAP, CH₂Cl₂, rt, 16 h, 88%; v, (COCl)₂, DMSO, Et₃N, CH₂Cl₂, $2-60$ °C, 30 min, 79%; vi, Me₂Cu(CN)Li₂, Et₂O, -78 °C, 30 min, 74%; vii, TBAF, AcOH, THF, rt, 5 h, 95%; viii, NaBH(OAc)₃, AcOH, CH₃CN, -20 °C, 2 h, 97%; ix, BnBr, NaH, THF, DMF, 0 °C to rt, 20 h; x, TsOH·H₂O, MeOH, H₂O, rt, 1 d, 68%; xi, I₂, PPh₃, imidazole, THF, 0 °C to rt, 1 d, 87%; xii, NaCN, DMSO, 40 °C, 2 d, 78%; xiii, TESOTf, 2,6-lutidine, CH₂Cl₂, -30 to -20 °C, 15 min, quant.; xiv, DIBAL-H, CH_2Cl_2 , -70 to -60 °C, 1 h; xv, PhSSPh, Bu₃P, benzene, rt, 12 h, 73% (2) steps); xvi, TBAF, THF, rt, 3 h, 95%; xvii, EDC·HCl, DMAP, CH₂Cl₂, rt, 12 h, 58%; xviii, Cp2Ti[P(OEt)3]2 (3 or 4 eq.), THF, reflux, 1 h, **4**: 52–67%, $21, 22: ~10\%$.

Scheme 4 Reagents and conditions: i, H₂, Pd(OH)₂/C, EtOAc, MeOH, rt, 1 d; ii, p-MeOC₆H₄CH(OMe)₂, CSA, CH₂Cl₂, rt, 30 min, 89% (2 steps); iii, BOMCl, iPr₂NEt, (CH₂Cl)₂, 40 °C, 12 h, 88%; iv, DIBAL-H, CH₂Cl₂, -80 to -30 °C, 2 h, 85%; v, MsCl, Et₃N, (CH₂Cl)₂, 0 °C, 40 min; vi, NaCN, 18-crown-6, DMF, 50 °C, 3 d, 98% (2 steps); vii, DIBAL-H, CH_2Cl_2 , -80 to -70 °C, 30 min; viii, Ph₃P=C(Me)CO₂Et, toluene, rt, 3 h, 84% (2 steps); ix, DIBAL-H, CH₂Cl₂, -70 °C, 20 min, 94%; x, p-(-)-DET, Ti(OⁱPr)₄, Bu^tOOH, MS4A, CH₂Cl₂, -50 to -30 °C, 2 h, 80%; xi, SO₃·Py, Et₃N, CH_2Cl_2 , 0 °C to rt, 2 h; xii, Ph₃P+CH₃Br⁻, NaHMDS, THF, 0 °C, 20 min, 96% (2 steps); xiii, DDQ, H₂O, CH₂Cl₂, rt, 2 h, 82%.

The enol ether **4** was converted to the IJKLM-ring fragment **23** according to our previously reported procedure (Scheme 4).4 The stereochemistry of **23** was unambiguously determined by X-ray crystallography of the corresponding bis-*p*-bromobenzoate **25** (Fig. 1).17 Furthermore, the H-ring moiety was successfully constructed in **23** in a similar manner to our previously established route18 in 32% overall yield utilizing acid catalyzed vinylepoxide–alcohol cyclization methodology.19

In short, a practical synthetic route to the HIJKLM ring fragment **27** has been establised. Further studies directed towards the total synthesis of ciguatoxin CTX3C (**1**) are currently in progress in our laboratory.

Fig. 1 ORTEP drawing of bis-*p*-bromobenzoate **25**.

Notes and references

- 1 For structures of ciguatoxins, see: M. Murata, A. M. Legrand, Y. Ishibashi, M. Fukui and T. Yasumoto, *J. Am. Chem. Soc.*, 1990, **112**, 4380; M. Satake, M. Murata and T. Yasumoto, *Tetrahedron Lett.*, 1993, **34**, 1975; M. Satake, A. Morohashi, H. Oguri, T. Oishi, M. Hirama, N. Harada and T. Yasumoto, *J. Am. Chem. Soc.*, 1997, **119**, 11 325; M. Satake, M. Fukui, A. M. Legrand, P. Cruchet and T. Yasumoto, *Tetrahedron Lett.*, 1998, **39**, 1197.
- 2 T. Suzuki, O. Sato, M. Hirama, Y. Yamamoto, M. Murata, T. Yasumoto and N. Harada, *Tetrahedron Lett.*, 1991, **32**, 4505; H. Oguri, S. Hishiyama, T. Oishi and M.Hirama, *Synlett*, 1995, 1252; H. Oguri, S. Hishiyama, O. Sato, T. Oishi, M. Hirama, M. Murata, T. Yasumoto and N. Harada, *Tetrahedron*, 1997, **53**, 3057; T. Oishi, M. Shoji, N. Kumahara and M. Hirama, *Chem. Lett.*, 1997, 845; T. Oishi, Y. Nagumo and M. Hirama, *Synlett*, 1997, 980; H. Oguri, S. Sasaki, T. Oishi and M. Hirama, *Tetrahedron Lett.*, 1999, **40**, 5405; H. Oguri, S. Tanaka, S. Hishiyama, T. Oishi, M. Hirama, T. Tumuraya, Y. Tomioka and M. Mizugaki, *Synthesis*, 1999, 1431; H. Oguri, S. Tanaka, T. Oishi and M. Hirama, *Tetrahedron Lett.*, 2000, **41**, 975; K. Maeda, T. Oishi, H. Oguri and M. Hirama, *Chem. Commun.*, 1999, 1063. For recent synthetic studies of other groups, see: M. Sasaki, H. Fuwa, M. Ishikawa and K. Tachibana, *Org. Lett.*, 1999, **1**, 1075; M. Inoue, M. Sasaki and K. Tachibana, *J. Org. Chem.*, 1999, **64**, 9416; K. Fujiwara, H. Tanaka and A. Murai, *Chem. Lett.*, 2000, 610; T.-Z. Liu and M. Isobe, *Tetrahedron*, 2000, **56**, 5391.
- 3 M. Maruyama, K. Maeda, T. Oishi, H. Oguri and M. Hirama, *Heterocycles*, 2001, **54**, 93.
- 4 T. Oishi, Y. Nagumo, M. Shoji, J.-Y. Le Brazidec, H. Uehara and M. Hirama, *Chem. Commun.*, 1999, 2035.
- 5 T. Oishi, Y. Nagumo and M. Hirama, *Chem. Commun.*, 1998, 1041.
- 6 Recent reviews on ring-closing metathesis reactions, see: S. K. Armstrong, *J. Chem. Soc., Perkin Trans. 1*, 1998, 371; R. H. Grubbs and S. Chang, *Tetrahedron*, 1998, **54**, 4413.
- 7 S. H. Pine, R. Zahler, D. A. Evans and R. H. Grubbs, *J. Am. Chem. Soc.*, 1980, **102**, 3270.
- 8 K. C. Nicolaou, M. H. D. Postema and C. F. Claiborne, *J. Am. Chem. Soc.*, 1996, **118**, 1565.
- 9 R. R. Schrock, J. S. Murdzek, G. C. Bazan, J. Robbins, M. DiMare and M. O'Regan, *J. Am. Chem. Soc.*, 1990, **112**, 3875.
- 10 J. S. Clark and J. G. Kettle, *Tetrahedron Lett.*, 1997, **38**, 123; J. S. Clark and J. G. Kettle, *Tetrahedron Lett.*, 1997, **38**, 127; J. S. Clark and J. G. Kettle, *Tetrahedron*, 1999, **55**, 8231.
- 11 J. D. Rainier and S. P. Allwein, *J. Org. Chem.*, 1998, **63**, 5310; J. D. Rainier, S. P. Allwein and J. M. Cox, *Org. Lett.*, 2000, **2**, 231.
- 12 Y. Horikawa, M. Watanabe, T. Fujiwara and T. Takeda, *J. Am. Chem. Soc.*, 1997, **119**, 1127; M. A. Rahim, T. Fujiwara and T. Takeda, *Tetrahedron*, 2000, **56**, 763.
- 13 T. Oishi, M. Shoji, K. Maeda, N. Kumahara and M. Hirama, *Synlett*, 1996, 1165; T. Oishi, M. Maruyama, M. Shoji, K. Maeda, N. Kumahara, S. Tanaka and M. Hirama, *Tetrahedron*, 1999, **55**, 7471.
- 14 The glycolate **12** was prepared from D-2-deoxyribose in 3 steps by standard procedures.
- 15 G. C. Fu, S. T. Nguyen and R. H. Grubbs, *J. Am. Chem. Soc.*, 1993, **115**, 9856; P. Schwab, R. H. Grubbs and J. W. Ziller, *J. Am. Chem. Soc.*, 1996, **118**, 100.
- 16 D. A. Evans, K. T. Chapman and E. M. Carreira, *J. Am. Chem. Soc.*, 1988, **110**, 3560.
- 17 *Crystal data*: $C_{39}H_{48}O_{10}Br_2$, $M = 836.61$, orthorhombic, space group $P2_12_12_1$, $Dc = 1.440$ g cm⁻³, $Z = 4$, $a = 5.5284(3)$, $b = 25.006(2)$, *c* $= 27.913(2)$ Å, $V = 3858.7(4)$ Å³, $F(000) = 1728$, $\mu(\text{Mo-K}\alpha) = 21.63$ cm^{-1} , $R = 0.053$, $Rw = 0.152$. CCDC 154471. See http://www.rsc.org/ suppdata/cc/b0/b009506k/ for crystallographic files in .cif format.
- 18 T. Oishi, K. Maeda and M. Hirama, *Chem. Commun.*, 1997, 1289.
- 19 K. C. Nicolaou, C. V. C. Prasad, P. K. Somers and C.-K. Hwang, *J. Am. Chem. Soc.*, 1989, **111**, 5330.